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We describe two new methods for locating the dew/bubble curves of fluids. One 
is a numerical method and the other an analytical method based on the use of 
series expansions. The utility of these two methods is illustrated by application 
to a simple one-component fluid model and to several model polydisperse fluids. 
The numerical method is based on a new geometric representation of the equi- 
librium conditions--similar in spirit to the geometric representations often used 
for solving the equilibrium conditions of pure fluids. Our calculations show that 
the series-expansion technique can be quite effective at producing accurate 
representations of the phase boundaries. 

KEY WORDS: Coexistence curve; critical point; dew/bubble curve; phase 
transitions; polydisperse; series expansions. 

1. I N T R O D U C T I O N  

In this paper  we shall  descr ibe  a new a p p r o a c h  to locat ing the phase  boun-  
daries  of fluids. A l though  there is a vast  l i te ra ture  on the formal  physical  
theory  of phase  t ransi t ions ,  only  a handful  of techniques have been 
deve loped  for pu t t ing  the formal  theory  to good  use. The " g o o d  use" we 

speak of here can be d iv ided  into two categories:  ( 1 ) t h e  expl ica t ion  of 
mode l  systems whose proper t ies  are in tended  to p rov ide  a fundamenta l  
descr ip t ion  of some real  system; and (2) engineering calcula t ions  necessary 
to the design of processes in which phase  t rans i t ions  occur. An example  
f rom the first ca tegory  is p rov ided  by  the work  of van Leeuwen and  
Cohen  (1) on  the ha rd-sphere  F e r m i - B o s e  mode l  of 3He-He4 mixtures.  
Star t ing with the a s sumpt ion  that  q u a n t u m  statist ics and  exc luded-volume 
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effects play a dominant role in determining the properties of liquid helium, 
van Leeuwen and Cohen began a very fruitful investigation into the 
properties of a mixture of hard-sphere fermions and bosons. Using both 
numerical and analytical techniques, they found that their model for 
3He-He 4 mixtures exhibited a quite interesting variety of phase behavior 
that subsequent experiments confirmed. An example drawn from the 
second category is provided by the problem of heat engine design. (2) 
In order to simulate the operation of a heat pump under a variety of 
operating conditions, it is necessary to determine the state of the working 
fluid in all regions of the apparatus. This requires accurate representations 
of the phase boundaries, and in the case of designs that use mixtures as 
the working fluid, may require that phase equilibrium calculations be 
calculated, so to speak, "on the fly." In each case, the two-phase equi- 
librium conditions must be solved for a range of thermodynamic states. 

The "good use" is therefore limited by our ability to obtain solutions 
to the equilibrium conditions. This paper describes two new methods for 
finding these solutions. Our original motivation for developing these 
methods was to make possible accurate phase equilibrium calculations on 
systems containing a large number of species, such as petroleum fluids. We 
find, however, that they can be quite useful even for pure fluids. The first 
method is a numerical procedure based upon a simple reformulation of the 
equilibrium conditions; it is founded on a simple geometric representation 
of the (reformulated) equilibrium conditions. The second is an analytical 
approach that relies on the application of series-expansion techniques. 
These two methods provide solutions to the equilibrium conditions of 
one-component fluids, multicomponent fluids, and polydisperse fluids. In 
both cases we limit our discussion to a special subset of the equilibrium 
conditions: the dew/bubble conditions. These conditions involve a smaller 
set of dependent variables than the full equilibrium conditions and are 
therefore easier to solve. 

For the remainder of this section we review some of the solution 
methods that are commonly used. In Sections 2 and 3 we illustrate our new 
methods on one-component and multicomponent systems, respectively. 
Section 4 contains our concluding remarks and suggestions for future work. 

1.1. One-Component Fluids ( C = 1 )  

In the case of fluids containing only a single species of particles the 
phase boundary, or coexistence curve, is identical to the dew/bubble curve. 
The (local) equilibrium conditions are ~3) 

p(T, x)= p(T, y) (1) 
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and 

/~(T, x) = #(T, y) (2) 

where T is the temperature, x and y are the number densities of two 
coexisting phases, p is the pressure, and # is the chemical potential. The 
problem is: given T (less than the critical temperature To), find x and y. [ I f  
the total system density p is fixed, then an additional equation, p = ~b/x + 
(1 -~)/y, must be added, where ~b is the number fraction of particles in the 
phase with density x. Since this conservation equation may be easily solved 
for ~b in terms of x, y, and p, this problem is really no harder than solving 
Eqs. (1) and (2).] There are three standard techniques for solving these 
equations: the equal-areas method, the bitangent construction, and the 
minimization of #(T, p). Each method has a simple geometric interpreta- 
tion and the numerical implementation of each method relies heavily on 
the geometric interpretation. These three methods are so well-known that 
we will not describe them in any detail except to point out that each 
one restates the equilibrium conditions in a manner that leads to a 
straightforward geometric representation. In Fig. 1 we draw p and /~ as 
functions of the density for the van der Waals model at a temperature 
below the critical temperature. It is not obvious from these graphs which 

density 

Fig. 1. The pressure p and chemical potential # (Gibbs free energy per particle) as a function 
of density for the van der Waals model at constant temperature (T= 0.8 To). It is not obvious 
from these curves which densities satisfy the equilibrium conditions. 
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volume 
Fig. 2. The pressure as a function of volume (per particle) for the same conditions as Fig. 1. 
The equal-areas rule states that the equilibrium conditions are satisfied when volumes/)1 and 
v2 are chosen such that areas A and B are equal. It is not difficult to obtain a good 
approximation to vl and v2 by inspection. 

Q.) 
Q,) 

& 

volume 
Fig. 3. The Helmholtz free energy as a function of volume (per particle) for the same condi- 
tions as Fig. 1. The bitangent construction solves the equilibrium conditions by locating points 
A and B such that the line AB has slope - p  and is tangent to the curve at A and B. 
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densities x and y will satisfy Eqs. (1) and (2). Al though a numerical solu- 
tion of these equations is not  too difficult to obtain by patient trial and 
error, the geometric representations (see Figs. 2 4 )  immediately suggest 
reasonable guesses for an approximate  solution and simple numerical algo- 
rithms for finding the exact solution. Moreover ,  the shapes of the curves in 
Figs. 2-4  provide useful information about  the numerical precision that will 
be required. The locus of densities x and y that  satisfy Eqs. (1) and (2) for 
T~< Tc comprise the coexistence curve, shown in Fig. 5. 

1.2. Mu l t i components  Fluids ( C > 1 )  

In the case of mixtures the equilibrium conditions are more  difficult to 
solve because there are addit ional the rmodynamic  variables. In a 
C-component  mixture the state of any phase is determined by T, p, and 
C -  1 mole fractions. For  an isothermal system at temperature T, density 
p, with mole fractions {f,}, the equilibrium conditions are (3) 

p(T,x ,  { f x j } )=p(T ,  y, {fyj}) (3) 

t~,(T, x, { f x j } )=p , (T ,  y, {fvj}), i =  1,..., C (4) 

N 

pressure 

Fig. 4. The chemical potential (Gibbs free energy per particle) as a function of pressure for 
the same conditions as Fig. 1. The equilibrium states are those which minimize the chemical 
potential for a given p. Thus, the "hat" MNO does not represent equilibrium states (except at 
the point O). Two-phase equilibrium occurs at the point O; the volumes per particle of the 
coexisting phase are given by the two values of (O#/Op) T at that point. 
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and 

_r (5) 
p x y 

.f~ = Cfxi+ (1 - r  (6) 

C C 

Z L ,  = ~ fyi = 1  (7) 
i = 1  i = l  

Here x and  y are the number  densities of the two coexist ing phases with 

mole  fract ions {fx~} and  {fyj}, respectively. 
When  C is greater  than  2, these equa t ions  can be quite difficult to 

solve for x, y, r {f~j}, and  {fyj}. The pr inc ipa l  source of  difficulty is due 
to the lack of a clear geometr ic  represen ta t ion  of the equi l ibr ium condi-  
tions. A somewhat  s impler  p rob lem is to locate  the b o u n d a r y  of the 
two-phase  region. This is the dew/bubble  p rob lem and  we shall focus at ten-  
t ion on it. The dew/bubble  condi t ions  are ob ta ined  by seeking only those 

1 . 5  

~2 
t~ 

0.0 

3 . 0  

' ' ' ' I ' ' ' ' I ' ' ' 

0 . 0  densi ty  

Fig. 5. The coexistence curve of the van der Waals model in the temperature-density plane. 
(The units are chosen such that Tc = Xc = 1.) The dots represent coexisting states determined 
using the equal-areas rule; the series-expansion results are represented by the solid curves: the 
thick curve comes from the 1S-term series, the thin curve comes from the 7-term series. The 
dotted curve represents the [7/8] Pad6 of the 1S-term series. The Pad~ was constructed to 
ensure that the correct T= 0 result was obtained. 
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solutions of Eqs. (3) (7) for which ~b --, 1 (or q~ --, 0). In this case, given T 
and {fj}, one must determine x, y, and {fyj} such that 

p(T, x, { ~ } ) =  p(T, y, {fyj}) (8) 

#i(r ,x ,  { f j})=#,(T,  y, {f~/}), i= l,..., C (9) 

and 
C 

Z f,,= 1 (lo) 
i = 1  

Here x is the density of the phase for which ~b ~ 1; thus, it is the "bulk 
phase"; y is the density of the second phase, that is "just barely present" 
since ( 1 - ~ b ) ~ 0 ;  the y phase is called the dew or bubble, depending on 
whether y is greater than or less than x. The locus of points (x, T) is called 
the dew/bubble curve and the locus of points (y, T) is called the shadow 
curve; we shall refer to these curves collectively as the dew/bubble curves. 
A set of typical curves is shown in Fig. 6. The pairs of points A1, A2 and 

1,2 

.,.a 

2 

0.8 

0.0 

(X,,,T,,) (Yo,To) 

C 

A, 

density 3.0 

Fig. 6. The dew/bubble (thick curve) and shadow (thin curve) curves for model2  in the 
temperature~tensity plane for v=  5. Two sets of coexisting phases are represented by the 
points (A1, A2) and (B1, B2). The points Aj and B1 lie on the dew/bubble curve, representing 
the total system density at which a second phase just begins to appear. The points A 2 and B 2 
lie on the shadow curve, representing the density of the second phase. The dotted curves 
represent the 5-term series-expansion result. (X0, To) and (Y0, To) are the condenterm points; 
C is the critical point (X,., T~). 
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B~, B2 represent pairs of coexisting phases; the point C is the critical point 
(X~,, Tc); the points (X0, To) and (Y0, To) are called the condentherm 
points. In a one-component system the dew/bubble and shadow curves are 
identical, as are the points (Xc, To), (Xo, To), and (Y o, To). The dew/ 
bubble and shadow curves are projections of a slice of the full coexistence 
surface onto the T-p plane, and as such they convey only limited informa- 
tion about the coexistence surface. In particular, they do not indicate the 
composition of the y phase, nor do they describe the state of the system 
when the total density lies within the dew/bubble curve---except that in this 
region the system is known to be in a two-phase state. 

While the dew/bubble conditions involve fewer variables, and are 
therefore easier to solve than the full equilibrium conditions, they are still 
quite difficult to solve. Although there are higher-dimensional analogs of 
the bitangent and minimization-of-~ methods used for one-component 
systems, they have not yet proved to be of much general use. We believe 
that this stems from the lack of a clear geometric picture of the functions 
involved. When C > 3 one usually resorts to numerical methods for solving 
nonlinear simultaneous equations that make only limited use of thermo- 
dynamics. We shall refer to those methods as "blind-search" methods. 
(These methods, the best of which can be quite sophisticated, are "blind" 
is the sense that very little, if any, knowledge of thermodynamics is built 
into their algorithms.) 

1.3. Polydisperse Systems ( C ~  oo) 

When the number of components becomes extremely large, as is the 
case in many polymer and petroleum applications, it has proved con- 
venient to model those systems as though C=  o% replacing the discrete 
species index i by a continuous species label L In these cases the mole 
fractions {f~} are represented by a mole-fraction density function F(I). 
Locating the phase boundaries of a polydisperse system is in some sense 
the ultimate phase equilibrium problem. I t  is hard to imagine a more 
difficult problem within this class. The dew/bubble conditions become three 
coupled nonlinear integral equations and the phase space becomes 
infinite-dimensional. 

The extreme computational difficulty posed by the polydisperse 
problem does have a major advantage: it makes "blind-search" methods 
appear quite infeasible. The study of phase equilibrium in polydisperse 
systems has therefore focused on the development of new solution 
methods. (4~16) In particular, we have, along a somewhat parapetetic path, 
been led back to search for essentially geometric formulations of the equi- 
librium conditions that have sensible projections onto a two-dimensional 
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space. While we cannot claim to have completely succeeded in doing this, 
we believe that the work described in the following sections is on the right 
track, We have found a simple reformulation of the dew/bubble conditions 
that leads to a simple two-dimensional representation of the dew/bubble 
conditions for a broad class of model fluids. The method works for 
one-component, multicomponent, and polydisperse fluids. In addition to 
suggesting numerical solution algorithms, it has led to a straightforward 
analytical solution method by series expansion. The latter method is only 
"new" in the sense that apparently no one thought it would yield usefully 
accurate solutions. The series-expansion method has been used for many 
years to elucidate the properties of phase boundaries near the critical 
point.(17 19) We have simply gone one step further: having understood the 
geometry of the dew/bubble curves, we merely extended the method to the 
entire coexistence surface. 

2. O N E - C O M P O N E N T  M O D E L S  

The problem here is: for a specified temperature T (<To), find 
densities x and y such that Eqs. (1) and (2) are satisfied. By making some 
rather trivial modifications of the these equations, we have come upon an 
alternative geometric representation that has proved to be quite useful. We 
begin by introducing two functions f(T, x, y) and g(T, x, y) defined by 

and 

f (~  x, y)=p(T,x)-p(T,y)  

g(T,x, Y)=exp[ #(T'x)-I~(T'ksT Y!1-1 

(11) 

(12) 

Clearly, if 

and 

f(T, x, y ) = 0  (13) 

g(T, x, y)=0 (14) 

then Eqs. (1) and (2) are satisfied. Although this form of the equilibrium 
conditions is hardly different from Eqs. (1) and (2), the definitions o f f  and 
g immediately suggest that the trivial solution x = y can be factored out. 
Thus, we define two new functions j7 and g by 

jT(T, x, y)=f(T, x, y)/(x- y) (15) 

~(T, x, y)= g(T, x, y)/(x- y) (16) 
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The equilibrium conditions may now be expressed as 

,7(7; x, y) = o (17) 

g(T, x, y ) = 0  (18) 

This form of the equilibrium conditions is especially useful for models in 
which the pressure is a rational function of the density. In these cases the 
trivial solution can be factored out by explicitly, and the polynomial 
represented by f = 0 is one degree lower than that represented by f = 0. In 
particular, if the equation of state is "cubic" (as in the van der Waals 
model), then the roots of the first equilibrium condition can be obtained 
by solving a quadratic equation! Generally a involves transcendental 
functions, so the term ( x - y )  cannot be divided out explicitly, l i t  is also 
possible to define g as the difference of the chemical potentials, but /~ 
always contains logarithmic terms and Eq. (12) has the advantage of 
eliminating those terms.] 

2.1. The Geometry  of the Curves F = 0  and 0=0 

Equations (17) and (18), for a given T, define two curves in the x-y 
plane. We shall refer to these curves as the f and g curves, respectively. 
The solution of the equilibrium conditions is represented by the points of 
intersection of the f and g curves. When p(T, p) has a single "van der 
Waals wiggle" the f and g curves will be represented by single, closed 
loops in the x-y plane. These curves will be symmetric about the line x =. y. 
For T >  To, the f and g curves do not exist [i.e., there are no real roots 
to Eqs. (17) and (18)]. For  T <  Tc the f and g curves intersect at four 
points. Two of these four points are the spinodal points defined by 
(Op/Op)T= O. At these points the f and g curves cross the line of trivial 
solution x = y with a slope of - 1. That is, the f and g curves are tangent 
when they cross the line x = y and they are perpendicular to that line. The 
remaining two points of intersection are symmetric about the line x = y 
and represent the desired solutions of the equilibrium conditions. As 
T--+ Tc from below, the f and g curves shrink to a point at x = y = Pc- In 
Figs. 7 and 8 we draw the f and g curves for several temperatures for the 
van der Waals model and for a hard-sphere based model of refrigerant 
R-12. (2~ Although the equations of state of these two models differ in their 
dependence on T and p, the f and g curves are qualitatively similar. 

2.2. Numerical  Solutions 

A new technique for numerically solving the equilibrium conditions is 
suggested by the geometry of Eqs. (17) and (18): simply to follow the f 



2.0 

0 . 0  , , 

0 . 0  

I I I I I [ ~ I I i I I I I I 

2.0 X 

Fig. 7. The f and g curves (thick and thin curves, respectively) for the one-component  van 
der Waals  model in the density~lensity plane for T =  0.9, 0.95, and 0.98. The curves are sym- 
metric about the line of trivial solutions x = y. The locus of nontrivial intersections of the f 
and g curves gives the density of coexisting phases. As the temperature approaches the critical 
temperature T =  1, both curves shrink to a point at x = y = 1, the critical density. The f-g 
intersection is located numerically by starting at the point A and following the f curve until 
it crosses the g curve. 

2.5 

Y 

0 . 0  , , , , 

0 . 0  2.5 X 

Fig. 8. The f and g curves (thick and thin curves, respectively) for R-12 in the density-  
density plane for T=0 .9 ,  0.95, and 0.98. These curves are qualitatively the same as those 
of the van der Waals model. The small difference in shape is due to the stronger interparticle 
repulsion built into the R-12 modelJ 2~ 

947 
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curve until it intersects the g curve, as schematically shown in Fig. 7. More 
specifically: choose an x, find y by solving jT(T, x, y) = 0, substitute x and 
y into ~. If ~ = 0, then you have solved the equations. In the case of cubic 
equations of state, one obtains two solutions to Eq. (17) for a given x, call 
them y~(x) and yz(X). Because the .,7 and ~ curves are symmetric about the 
line y = x, only one of the solutions is needed. Choosing yl(x), solving 
Eq. (18) is reduced to locating the zeros of the function ~(x, y~(x)). Since 

is >0  outside the ~ curve and <0  inside the ~ curve, locating the zero 
of ~ is straightforward. 

In the case of the van der Waals model, this method is especially 
simple. Using units such that To=pc= 1, the van der Waals model, 
this method is especially simple. Using units such that Tc=p~.= 1, the 
van der Waals pressure is given by 

_,7 = 0 implies 

p(T, p)= 8/'p 
- - - 3 p  2 (19) 
3 - p  

0 = ( 8 T -  9x + 3x 2) + (6x - x 2 - 9) y + (3 - x) y2 (20) 

which has two real roots if and only if T <  1: 

3 - x  [27-32T+9x-3x2-x3]  1/2 
y(r, x)=--~+_ (21) 

4(3 - x )  

~(T, x, y) is given by 

f,x(3-Y) exp[ x Y 9(4~TY)J-1 } ( x - y )  --1 (22) g(T'x' Y )=(y (3 -x )  3 - x  3 - y  

A graph of ~(T, x, y(T, x)) versus x is given in Fig. 9 for the case 
T=0.9. The quantity ~,(T, x, y(T,x)) is tangent to the line ~ = 0  at the 
spinodal points. The equilibrium conditions are solved numerically by 
starting at point A or B and following the curve until one locates that 
x for which ~(T, x, y(T, x))=0. 

2.3. Analyt ic Solutions 

In recent years much has been written about the critical point proper- 
ties of classical model fluids and how they differ from the critical point 
properties of real fluids/18,19) In particular it is always noted that classical 
models are (usually) analytic functions of T and p in the vicinity of the 
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i i i i j i i i i 

0.0 2 . 0  
X 

Fig. 9. Plot of ~ as a function of density along the curve 3~ = 0 for the van der Waals model. 
(T=0.9T,). The two branches of the curve result from the fact that for a given x there are 
two values of y such that j7= 0. The equilibrium conditions are solved by starting at either 
point A or point B and locating the points at which ~ = 0. 

critical po in t - -guaran tee ing  critical behavior  that  is quite distinct from 
most  real systems. But until recently this analytic behavior  has not  been 
exploited in phase equilibrium calculations. For  one-component  models, 
power series solutions of  Eqs. (17) and (18) lead to quite accurate represen- 
tations of the coexistence curve, as well as other  the rmodynamic  properties 
on that c u r v e .  (9'21'22) 

The functions )7 and ~ are particularly appropr ia te  for such techniques. 
By choosing x to be the independent  variable, we express the coexistence 
curve in terms of the expansions 

T= T C+ ~ Ti(x-  Xc) i 
i = 2  

and 

(23) 

y=X,.+ L Y i ( X - - X c )  ' (24) 
i = 1  

The coefficients {T~, y~} are determined by substituting these series 
into Eqs. (17) and (18), expanding )7 and ~ in powers of (x-X~.), and 
setting the coefficients of  each power of  ( x -  Xc) equal to zero. By using the 
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Gibbs-Duhem equation to relate density derivatives of ~t to density 
derivatives of p, one can express the coefficients { Ti, Yi} in terms of tem- 
perature and density derivatives of p alone. Kincaid et al. (22) have obtained 
T2 through T13, and Yl through Y12. The first several coefficients are given 
in Table I. For any particular model a series representation of the 
coexistence curve may be obtained by "simply" evaluating derivatives of 
the pressure at the critical point. The details of those calculations, as well 
as application to several models, are presented in ref. 22. By forming Pad6 
approximates of these series, very accurate approximations to the 
coexistence curve, as well as other thermodynamic functions on that curve, 
can be obtained. 

In Fig. 5 we show the results for the van der Waals model. ~ The thick 
curve is the series representation of T(x) using terms up to 15th order in 
( x - X c ) .  The dotted curve is a [7 /8]  Pad6 approximant of the series. The 

Table I. Coexistence Curve Series Coeff ic ients for Pure (Classical) Fluids a 

1 
T2 = - ~ q3o 

1 
T3 = - ~  [3q l tq4o-  (5q21 +4q11) q3o] = --T2y2 

1 
2 2 2 72q~lq3oq4o_ 150qllqZoq31 T4= 5400q~lq3o [45ql lq3~176 18qnq4o-  

+ 75q12q~o + (50q21 + 200q~lq21 + 128qZa) q~o] 

T5 = --T2 Y4 + 2T2 y3 _ 2T 4 Y2 

y~ = --1 

1 
Y2 = -- - -  [3qll q4o - (5q21 + 4q11 ) q3o] 

15qllq30 

Y3 = _y2 

Y4 = --{135q~q~oq6o + [(315q~aq21 + 144q~) q~o-  378q~1q3oq4o] qso 

3 3 2 756q~1)q3oq24o -- 630q~lq~oq41 + 378qilq4o -- (1134qllq21 + 

2 2 + [630q~ q3oq3~ + (1050qlxq221 + 2184q~q2~ + 600q~ 0 q32o] q4o 

+ (525q~q2z-  525q12q2~ ) q4 o - (350q31 + 2100ql~q~ + 1176q~1q2~ 

+ 1072q~1) q~o }/(18,900q~ q~o) 

Y5 = 2y~ -- 3y2 Y4 

a q~ = (Oi+Jp/c~pi OT j) evaluated  at Pc and  T c. 
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coefficients of the Pad6 have been chosen such that at T =  0, x - - 0  and 
y = 3. The series representation provides a good approximation down to 
temperatures of about 0.7To. The [7/8] Pad6 appears to work well for all 
temperatures below T,,. (Note: the [7/8] Pad6 has been forced to give the 
correct result at T =  0.) 

2.4. Near  T = 0  

Although classical model fluids are not generally used to represent 
fluid properties at very low temperatures, calculations of the phase diagram 
of a given model often include the low-temperature behavior for the sake 
of completeness. The three canonical methods for solving the equilibrium 
conditions, as well as the f - g  method we have described, are not very 
useful near T =  0 because the coexistence curve has essential singularities at 
T =  0. These singularities make numerical computations very difficult. In 
the case of the van der Waals model the [7/8] Pad6 approximant to the 
series representation of T(x) works well, but on all other models that we 
have investigated, we have not found a Pad6 that, when forced to give the 
correct T =  0 values for x and y, does not have extraneous zeros or poles 
at higher temperatures/22) 

We suggest that if the low-temperature portion of the coexistence 
curve must be calculated, then f and g be used to obtain asymptotic 
expansions about T = 0 .  For  the van der Waals model we find, to 
"lowest order," 

y =  3 - 8 T / 9  (25) 

and 

81 (27)  
x=~-~exp  -- ~-~ (26) 

A more complete representation is provided by 

x = 2 + 22(2/z + 2/3 + 42/9 + 4z2/27 + . . .)  

q- 2316/Z2 -.}- 10/(3Z) + 49/18 + 40Z/27 + 20Z2/27 + ---] 

-{- . . .  

T =  9z/8 - 322/8 + ~.z2/8 + 22(z/8 + z2/12 + ..-) + ... 

(27) 

(28) 

where 2 = 3(3 - z) exp[- - (3 + z)/z] and z = 3 - y .  

822/57/3-4-34 
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3. M U L T I C O M P O N E N T  A N D  POLYDISPERSE FLUIDS 

When the fluid consists of a mixture (discrete and/or polydisperse) the 
dew/bubble conditions are more difficult to solve because one must also 
determine the composition of the dew or bubble phase, i.e., the solution 
involves additional variables. In these cases the geometry associated with 
the dew/bubble conditions is no longer two-dimensional and thus is more 
difficult to visualize. This has tended to lead to solution algorithms that we 
would tend to classify as "blind-search" methods. That  is, the methods tend 
to use numerical searching algorithms that do not rely very much on the 
geometry associated with the dew/bubble conditions. The utility of these 
algorithms begins to decrease rapidly as the number of components in the 
mixture increases. (In practical applications utility is synonymous with 
computational speed.) When the fluid is polydisperse, there is in effect an 
infinite number of components, and the blind-search methods are not very 
useful. 

In this section we shall discuss new methods that have been devised to 
solve the dew/bubble conditions for mixtures with very many components. 
We begin by briefly describing two methods that grew out of recent 
investigations of phase equilibrium in polydisperse fluids (Sections 3.1 
and 3.2), followed by a more detailed description of our recent work on 
this problem (Section 3.3). Our recent work does not yet enjoy as wide a 
range of applicability as the other two methods, but it is a method more 
directly tied to the geometry associated with the dew/bubble conditions, 
and we believe, therefore, that it represents an important step toward a 
more general and quite powerful method. 

3.1. Perturbat ion Expansions 

Gualtieri et  aL, (4) Johnson et  al., (5) Briano and Glandt, (7) 
Kincaid et  aL, (6) and Kofke and Glandt (1~ have developed methods that 
determine the properties of a polydisperse fluid, in particular the phase 
boundaries, that are based upon the properties of some reference system, 
the properties of which are assumed to be known completely. In these 
methods the dew/bubble curve is that of the reference system plus correc- 
tions that depend on the differences between the reference system and the 
system of interest. These methods can be quite effective, but only in certain 
regions of the phase diagram. In particular, the perturbation expansions do 
not work (i.e., converge) in those regions of the phase diagram where the 
phase boundaries of the reference system are not qualitatively the same as 
those of the system of interest. For example, if the reference system is a 
pure fluid and the condentherm temperature To is greater than the critical 
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temperature of the reference system, there is no way for the perturbation 
methods to generate the dew/bubble curves or temperatures in the interval 
( L , ~  . . . .  p, To). 

3.2. Quadrature  Methods  

The quadrature method is an ingenious and effective method, first 
described by Cotterman and Prausnitz (14) [see also refs. 15 and 16], for 
correcting the deficiencies of pseudocomponent schemes. The essential 
feature of the method is to choose C' pseudocomponents in a way that 
provides an accurate description of the composition of the mixture as well 
as an accurate approximation to some functions of {f~}. (Here C' is usually 
much smaller than C.) More precisely, Zc=l f i =  1 is approximated by the 
integral S F(I) dI, where F(I) is the mole-fraction distribution density. Then 

F(I) dI is replaced by Zc'= 1 w(Ii) F(Ik), where w(Ik) and I k are the weight 
factors and nodes, respectively, of the Gaussian quadrature approximation 
to fF(I)dI.  Cotterman and Prausnitz showed that their quadrature 
method provided more accurate descriptions of phase equilibrium than 
several commonly used pseudocomponent methods when C' is the same for 
each method. This is a splendid result, because it provides greater accuracy 
without having to introduce a completely new solution algorithm for 
solving the equilibrium conditions. 

Although this method provides a way that in some sense reduces the 
number of components, ultimately some type of numerical searching 
scheme must be implemented in order to solve the equilibrium conditions. 
It is precisely this numerical searching scheme that is the focus of our 
investigation. This method can suffer from the same geometric defect that 
the perturbation method has: the coexistence surface of a C'-component 
mixture can not always closely approximate the coexistence surface of a 
C-component mixture when C '<  C. 

3.3. T w o  N e w  Approaches 

The two methods that we describe below are not limited by the defects 
that the perturbation and quadrature methods possess. Although they 
cannot be used on as broad a class of models at present, we think there is 
a reasonable probability that they can eventually be generalized. We begin 
our discussion of these two methods with a description of the dew/bubble 
conditions and then develop the methods along lines similar to those 
described in Section 2 for one-component systems. 
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The dew/bubble conditions for a polydisperse fluid are 

p(T, xlF) : p(T, y] Fy) 

141, T, xIF)=#(L T, ylFy) 

f Fy dI= l 

(29) 

(30) 

(31) 

The chemical potential depends only explicitly on F through the ideal 
mixing term kn Tln F(I); all other dependence on F will be through a set 
of functionals {wi} of F. Thus, we define/~ by 

#(I, T, p, {wj})=kBTlnF(I)+ ~(I, T, p, {wj}) (32) 

Equation (30) may be rearranged to yield 

Fy(I) = F(I) exp ka-~-- (33) 

Substituting this expression into Eq. (31), we obtain 

~x ~y 
f F(I) exp dI= 1 

kB T 
(34) 

The dew/bubble equations may now be transformed into 

f(T, x, yIF, Fy)= p(T, x l F ) -  p(T, ylEv) = 0 (35) 

and 
A 

g( T, x, y [ F, Fy ) = f F( I) exp ~ d I - 1 =  0 (36) 

with 

Fy(I) = F(I) exp ~ix -/~y (37) 
kBT 

These equations look similar to the one-component dew/bubble condi- 
tions, but they are still quite different because Fy is not explicitly deter- 
mined. There is still life in the f and g curves, however, if the functionals 
{wi} can somehow be eliminated. How to do this in general is not yet 
clear. But it can be done for a large class of models; (8) it is easy to do for 
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the simple model fluids given in Table II. For  these models, f and g 
depend on Fv only through 

Zy = f IFy(I) dI (38) 

That is, for the models listed in Table II, explicit expressions for Zy can be 
obtained as functions of T, x, and y. Such expressions are obtained by 
substituting Eq. (37) into Eq. (38) and solving for zy in terms of T, x, 
and y. For these models the dew/bubble conditions become 

f ( T ,  x, y) = 0 (39) 

g(T, x, y) = 0 (40) 

just as in the one-component case. Once Eqs. (39) and (40) are solved for 
x (T)  and y(T) ,  Fy(I) is immediately obtained from Eq. (37). 

Table II. Functions Defining Models 1, 2, and 3 

Model 1 I-van der Waals, b(I)=bo+blI, a(1, J)= 1] 

p(T,p,z)= 8Tp 3p 2 
3 - p(bo + bl z) 

gz/)J-  
1 

zy 1-  3(x 2-  y2)bt/(STv) 

Model 2 [van der Waals, b(I) = 1, a(I, J) (I + J)/2] 

8rp 
p(T, p, z) = 3 --0 -302z 

~(I, T ,p[F)=TIlnF(I )+ln(3P~_p)+3P~pl-~p(z+l)  

1 
zy l + 9(x -  y)/(8Tv) 

Model 3 [Soave-Redlich-Kwong, b(I)= 1, a(I, J)= (I+ J)/2] 

8Tp 9p2z 
p(T,p,z) 

3 - p  3+p 

Zy v -  (27/8T)ln[(3 + y)/(3 + x)] 
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3.3.1. The Geometry  of the f and g Curves. The f and g 
curves of the mixture bear a close resemblance to those of the one-compo- 
nent fluid. There are, however, some important distinctions: 

1. The curves are no longer symmetric about the line of trivial 
solutions x = y. 

2. The curves are tangent as they cross the line x =  y, but these 
points no longer can be identified with spinodal points. 

3. As the critical point is approached, the curves do not shrink to a 
point; rather, a nontrivial crossing point of the curves moves to 
the x = y line. 

4. Above T,. the curves maintain nontrivial crossing points, until at 
the condentherm temperature To they become tangent at a single 
point; for T >  To the curves do not intersect. 

Figure 10 illustrates these features for model 2. 
It is still useful in the case of mixtures to introduce j7 and g defined 

by Eqs. (35) and (36), especially for numerical computations, but j7 will not 

2.5 

0.0 

1 

i i i n l l l l l ] l i l  i i i  

0,0 X 

I 

2.0 

Fig. 10. The f and g curves (thick and thin curves, respectively) for model 2 in the density 
density plane for T =  0.9 (v = 10). The dotted line represents the trivial solutions, x = y. The 
nontrivial intersections of the f and g curves -represent solutions of the dew/bubble conditions, 
x is the density of the bulk phase, and y is the density of the dew/bubble. The search for the 
nontrivial solutions follows paths 1 and 2. If no solution is found along path 2, path 3 is taken 
(this is required only at temperatures near and above T,.). 
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necessarily be polynomial in x and y (see model 3). Also, the 7 and 
curves are not always closed loops, as shown in Fig. 11. The additional 
thermodynamic degrees of freedom in mixtures may allow additional fluid 
phase transitions. These transitions manifest themselves through the 
appearance of additional branches of the f curve and the absence of a 
closed loop for the g curve. If the f curve is polynomial, the appearance 
of additional phase transitions is easy to detect by determining the number 
of real roots of j7 = 0 for fixed T and x. 

Model 1 provides a good illustration of this latter point. For  fixed T 
and x, )7 = 0 is a quartic polynomial in y. For  a range of T there are four 
real roots instead of two. (See Fig. 11.) 

3.3.2.  N u m e r i c a l  S o l u t i o n s .  Our numerical solution method for 
the dew/bubble conditions is indicated schematically in Fig. 10. It is basi- 
cally similar to the one used for the one-component case, except that, since 
the f and g curves are not symmetric about the line x = y, it must also 
locate an additional crossing of the two curves. The basic strategy is the 
same: follow the f curve until it crosses the g curve. The dew/bubble curves 
shown in Figs. 6 and 12 were obtained using this method. The dew/bubble 

15.0 

y 

0.0 I ' I ' I ' I ' 

0.0 2.5 X 

Fig. 11. The f and g curves (thick and thin curves, respectively) for model 1 in the 
density~tensity plane for T=0.7  (v=10,  b0=0.12, bj=0.88).  For this model additional 
equilibrium states are possible, as indicated by the multiple crossing points of the f and g 
curves. In this particular case the two crossing points for which x is approximately 1.5 are not 
mechanically stable. 
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Fig. 12. The dew/bubble  ( thick curve)  and  shadow (thin curve)  curves for model  1 in the 

t empera tu re -dens i ty  p lane  for v = 10 and  bo = 1/2. The dot ted  curves represent  the 5-term 

ser ies-expansion result. 

2.0 

.o 

.,o 9 

r r162 

O 

0.0 ~ 

o.o I 6.o 

Fig. 13. The mole-fract ion densi ty  d i s t r ibu t ion  Fy as a function of species label for model  2 
(v = 5, see Fig. 6). The nine curves represent  Fy at  nine different po in ts  on the shadow curve. 
Curve  1 is for the po in t  y = 2 , 8 5 ,  T = 0 . 8 ;  curve 9 is for the point  y = 0 . 5 2 9 ,  T = 0 . 8 .  The sixth 

curve (dot ted)  is d rawn at the cri t ical  densi ty  and  temperature .  At tha t  point  F(I)= F~(I). 
Thus, the dot ted  curve also indicates  F(I). 
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curves do not, of course, show the composition of the shadow phase. 
However, given the dew/bubble curves, it is a simple matter to determine 
Fy(I) using Eq. (37). In Fig. 13 we plot Fy(I) for several temperatures. 

Near the condentherm points (Xo, To) and (Yo, To) (see Fig. 6) the 
crossing points of the f and g curves are quite close to each other, and 
between the crossing points the two curves are nearly identical. In this 
region it is difficult to maintain enough numerical precision to locate 
accurately the dew/bubble curve. We find it necessary to determine To, Xo, 
and Yo using another method. In the neighborhood of the condentherm 
points we represent the dew/bubble and shadow curves by 

Y= Yo + ~ Y i ( x -  Xo) i (41) 
i 1 

T= To+ ~ T i (x -  J(o) i (42) 
i - - I  

Substituting these expansions into Eqs. (39) and (40), we find that To, Xo, 
and Yo are determined by 

f(To, Xo, I1o)=0 (43) 

g( To, Xo, I1o)=0 (44) 

and 

fx(To, Xo, Yo) gy(To, Xo, Yo)-fy(To, Xo, Yo) gx(To, Xo, Yo) = 0  (45) 

where the subscripts on f and g indicate partial derivatives. We solved 
these equations with a "blind-search" algorithm using initial guesses for To, 
Xo, and Y0 obtained from the calculated dew/bubble curves. We note that 
although this "brute force" method was more reliable than our dew/bubble 
algorithm, it is still quite difficult to maintain adequate numerical precision 
during the calculations. In Figs. 14 and 15 we show how To, Xo, and Yo 
depend on 1/v = var(F(I)). [We choose F(I) = vVF-1 exp( -vI)/F(v).]  

The point at which the dew bubble and shadow curves cross is the 
critical point, denoted by the point C in Fig. 6. Our values for Tc and X c 
shown in Figs. 14 and 15 were obtained by simple linear interpolation of 
the dew/bubble curve data. 

3.3.3. Solut ion by Series Expansions. The numerical proce- 
dures described above are useful because, with proper attention to the 
numerical precision problems that arise, they guarantee a numerically exact 
representation of the dew/bubble curves. The numerical procedures are also 
based on a simple geometrical representation of the dew/bubble conditions, 
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Fig. 14. The condentherm temperature T o and critical temperature T c for model 2 as a 
function of the variance of F(1), which in this case is l /v.  The dots are values located 
numerically; the curves represent the series-expansion results. 

2.0 

0.5 

+ i m + + + "  ................ " .................... . . . . . . . . . . .  

i i i t I i i J i 

o.o var(F) o.2 

Fig. 15, The condentherm densities X 0 and Y0 and the critical density X~. for model 2 as a 
function of the variance of F(1) [va r (F )=  1/v in this case]. The dots are values located 
numerically; the curves represent the series-expansion results. 
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so that when computational difficulties arise, or when the phase behavior 
becomes more complicated, one can always use the graphs of the f and g 
curves to suggest modifications of the algorithm. However, like all other 
numerical schemes for solving equilibrium conditions, the method is rather 
tedious. An alternative to numerical algorithms is the method of series 
expansion. The results described below indicate that series expansion may 
prove to be a very useful (i.e., efficient) method for solving the dew/bubble 
conditions. Even more intriguing is the very likely possibility that the series 
expansion method can be used on a much broader class of models than we 
consider here. 

The method is conceptually quite simple: given T 0, Xo, and Yo [and, 
of course, f (T ,  x, y) and g(T, x, y)] ,  represent the dew/bubble curves by 
the expansions given in Eqs. (41) and (42); the coefficients Yi and T~ are 
determined by expanding the equations 

and 

f (T(x) ,  x, y(x)) = 0 (46) 

g(T(x), x, y ( x ) ) = 0  (47) 

about the point x = Xo. This method will be useful if enough coefficients Y~ 
and Ti can be determined so that Eqs. (41) and (42) yield an accurate 
representation of the dew/bubble curves. 

One can also determine To, -go, Yo, To, and Xc using a series expan- 
sion method. For  these models the dew/bubble curves collapse onto the 
one-component coexistence curve in the limit 1Iv = var(F) ~ 0. In that limit 
T o and Tc ~ Tc. 1 . . . .  p = 1 and Xo, Yo, and X c ~ Xc,1 . . . .  p = 1. Thus, setting 
e = 1 / v ,  

and 

X o=1+ ~ A f  (48) 
i = 1  

Y o = l +  Z B f  (49) 
i = 1  

To = 1 + ~ Cie i (50) 
i = 1  

one can obtain the coefficients Ai, Be, and Ci by substituting Eqs. (48)-(50) 
into Eqs. (43) (45) and expanding about e = 0. The series-expansion results 
are compared to the numerically exact results in Figs. 14 and 15. It seems 
clear to us that this approach is quite promising. A complete description of 
this technique is given in refs. 21 and 9. 
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4. CONCLUSIONS 

Even though the phase space of a complex mixture is quite large, we 
hope that the examples we have discussed above make it clear that com- 
prehensible descriptions of the phase behavior of such systems is possible. 
We think that the series-expansion method will prove to be an extremely 
effective technique. The Pad6 approximants of the series provide closed 
(approximate) expressions for the dew/bubble curves. The series coefficients 
can be determined symbolically and can include parameters so that entire 
classes of models may be dealt with easily. (9'21~ For applications where 
more accurate solutions are desired, the Pad6 representation can be used 
as a first guess for other algorithms, and thereby ensure a greater 
likelihood of convergence. Furthermore, it seems likely that similar 
methods can be developed to solve the full equilibrium conditions. 

Our series-expansion method for the dew/bubble curve works well 
because the expansion is made around the extremal points of the dew/ 
bubble curves--not about the critical point. To obtain a series representa- 
tion of the entire coexistence surface, we expect that the expansion will 
have to be centered along the "top" of the coexistence surface. 
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